| ) io ()"
] i
’ kia2 Directed Jet Kayleigh
|
: 0.00 0.0000 0.0000
] 0.05 0.15326 | 0.1536
- 0.10 0.2107 0.2108
F
| 0.20 0.2793 | 0.2794
ﬁ 0.30 0.3181 5 0.3182
' |
, 0.10 0.3381 ; 0.3382
i 0.50 0.3k429 0.3k432
| 0.50 0.3341 0.33hk
} 0.70 0.3107 0.3111
0.80 0.2696 0.2701
.90 0.2010 0.2015
1.00 0.0000 0.0000

Table 1: Comparison of tne frequency d, (in non-dimensicnal
form) over the range (34) of unstable wavelengths

| as predicted by Eq. (33) of the direct theory of

jets and by Eg. (U40) due to Rayleign [1,2].
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b, A viscous elliptical jet without rotation or twist.

In this section we consider a jet of an incompressible linear viscous
fluid; and, in view of the results for the stability of an inviscid Jet,‘we
limit the discussion to motions in which

Wy =0 , @ = const. (45)
To account for the viscosity of the fluid medium, we must provide appropriate
constitutive equations for the quantities g, g? and g?. Much of the develop-
ment of this section is similar to that of Green [1Q] in which the jet is
restricted to be circular.

Referred to the orthonormal basis (El,ge,ga) introduced in section 2, the

response functions can be expressed in terms of their components in the form

A A. . .
n-as, M-l , BY- - 8

As a consequence of the symmetry of the assumed flow, (10) to (12) suggest

that we put

N e
n = n =

312=Q13=T’;21‘=T/;e3=0 , (u7)

1}
(@)

A A i
p2 = pl3 . g2l . 3

With the help of (4) to (6) and (46), the mechanical power (19) reduces to

X o i L), esp, L fead Ax22 48
;7P"nvz+“ &f“ %+p %z+p %z 2 (48)

where we have set

A
fraa ¢a(aaa

Sau 3 S*aa = ¢d£aa (no sum on a) . (49)

Z’)+¢az

We seek to characterize the linear viscous property of the fluid in appropriate

constitutive equations for the one-dimensional functions

15-
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A3 Axll Ax22 Axll Ax22 |
n3,“ s T sP P . (50) !

To this end, we assume that the quantities (50) are linear functions of degree

one in the kinematic variables
Vz’gl’QQ,ng’QZZ (51)

with coefficients that depend upon é1 and ¢ Hence, we take

N
2R xlvz-+xgga+-xggaz ,
{ T/}*ad = )\ZBCB gl )\gBCBZ s (52)
} (no sum on «)
A
p*acx = KgBCB e X'(;BGBZ 2

where kl,kg,..., 9B are functions of ¢, and ¢, and we have used (9) to
Nx Ax
eliminate b from the expressions for m % and p o
A three-dimensional linear viscous fluid is isotropic. In order that the one-

dimensional theory under consideration reflect the symmetry properties of the fluid

and the geometry of the jet, we impose the requirement that under the transformations
(A it Al e S (e = s ® =9 ) (53)

the mechanical power (48) remain invariant. Consequently, under (53) the

functions (50) must transform according to

N N A# Ax A¥ A
ns'ﬂ n3 8y y P B T g (54)

b

Hence the relations (52) reduce to




e
SO P O o2 i e e 9

R

T Y s A P et Y e ‘ ‘
t : s ma— :

A3 o
no = Alvz + }\QCQ' ’
Ay
neY xgega (no sum on @) , (55)
Aaa L aBf
p =\ ng (no sum on o) .

In order to determine explicit values for the coefficients in (55), we
recall briefly some aspects of an approximation procedure for rod-like bodies
in the three-dimensional theory. A detailed development of this procedure can
be found in Green et al. [12] and a brief outline is included as an appendix to
Csulk end Naghdi [11]. Without going into detail, we recall that the developments
in Green et al. [12] are based on an approximation for the position vector to the f
meterial points in the rod-like body and invoive integration* of the three-dimensional i
equations through its cross-section. Let the material points be identified with the

convected coordinates ei (i=1,2,3) and, for convenience, set 93=§- Further, let

p dencte the position vector of a typical point at time t. Then,

~

)
R = 2( aa’gﬁt) b §‘i = _-i— Y
= (56)
= " . B o - TN SR, X
By 848y * & "8 =8 » € g g , g=detg,
wnere g and 59 are the covariant and contravariant base vectors, 8i3 is the

metric tensor, giJ its inverse and 51 is the Hronecker delta. 1In the present

J

context the fluid is assumed to occupy a region of space in the neighborhood

of the curve 8%=0, bounded by the free (material) surface

EE a1, (57)

where we identify 6%=0 with the z-axis. With the help of (4),

»
It should be mentioned that the one-dimensional eguations that result from
this procedure can be brought into 1-1 correspondence with the theory or a
directed curve.




e

the approximation for the position vector mentioned above leads to

B o 2
p=z(Stle +0p)(5,t)e; + 673, (5,t)e, - (58)

It follows from an examination of the second and third terms of (58) that
(57) represents an elliptical cross-section with semiaxes ﬁa. The velocity v*,

which is the material time derivative of p, is given by

« 1 P
T SR FOR Lo Y0 (59)

where we have used (4), (8) and (45). For an incompressible linear

viscous fluid, the determinate part of the stress response is given by

nj-

i 13 . .
T o= ghy g Toe =ply g v g ] 60
& ST o T B B gl i60)

J are the covariant and contravariant components of the siress

where T, snd T
1J
tensor, p is the shear viscosity and a comma denotes partial differentiation ¢

with respect to g-. Ve may now use {(57), (59) and (60) in the usual

expressions  for the quantities (46) in terms of integrals over a cross-

section of the rod-like tody. The results of this rather long but routine

calculation are

3
M ARt
N«
\ \
o sum on &,
= . § (no sum on ) 1
Nrgy 1 T E
p A il olW2Qagaz L ;

so that we may identify

Ysee, for example, equation (il3) of Caulk and Naghdi [11].

18.
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& o 11 2
kl i 2”’" ¢l¢2 ’ )‘2 =0 ] xh ¥ )‘u = 2“'" ¢l¢2 3

(62)
11 3 22 12 21 ;
X7 = -.1‘ [T, 'b2¢i ) )\7 = -lu‘ WTT ¢l$g ) Ku = k]{, = L? = X7 =0

in (55).
Adopting the values (62) and using the constitutive equations (55) in
the field equations (10) to (13), we obtain the governing differential equa-

tions for a linear viscous jet, namely

“"*‘”ﬂz("t +wv,) ==, = 9,01,0(2:8,) - 9,9,,0(0,:0,) + 2“"("’1?’2"z)z ’
b o 00,0yt ey, D)+ 2uT 3.9,8) = PHoyo,h(p,8,) ¢ unleds,g )., (63)
§ 0030, (G + ¥Cp, + ) + 20 89,0y = B+ 2190(05.0)) + E um(038,6,,),
where use has been made of (45) and (17) and we have let

h(¢1’®2) o h(91,¢2,0) . (61“)

The set (63) is completed by adding (8) and (9). Apart from differences
in notation, we note that (63)1’2 3 reduce to those given by Green [10,

b
Zos. (6.3) and (6.4)] in the special case of a circular cross-seetion (¢l=¢2)

end in the absence of gravity.
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Se Small motions superposed on a uniform flow of a viscous jet.

The motion (23) satisfies the differential equations (63), (8) and (9);
and, hence, it also represents an exact sclution for the viscous jet discussed
in section 4. Since in the case of an inviscid jet (see section 3) the
superposed rotations Ga had no effect on the resulting differentiation equa~
tions, for simplicity we assume that $a= O here and consider small motions
superposed on the uniform flow (23) in the form specified by the first two
of (25) and the fourth of (25). 1In a manner similar to that employed in
{ section 3, we again neglect squares and products of quantities represented by
symbols with superposed tildas in (63), (8) and (9). After setting v, =0

without loss in generality, the resulting linearized equations are

* 2 2
Tp a v, =-pz+nT(¢l+92)z+2pma A
2
S ] s ra i s s ey ok
L ﬂp a glt+2.-ﬂ"~‘ ;l == p+1T‘TI.T (391+¢2/ZZ ﬁl+b($2 wl)] + u wa %lzz b
2
* U 2 1 L
tmpa Cop t2uma gy = p+ﬂT[aT (3@2%1)22-321‘%(31-:2)]+r; el s

where again for convenience the tildas have been omitted.

Again we utilize the change of variables (28) and by adding (65)2 and

(65)3, with the help of (65)h,5,6’ we obtain

»~

2 X i ahr
P a ‘t ——pz+2n‘1¢z+2una \zz ’

X wp 808 . +Oun = r)*'T'l‘l'a2 5] + % »~-m33
y TR eTi, ,wa:bt—---4z>zzv W BTR Do 9

T

-

La

EOtFav il

Subtraction of (65)3 from (65)2, after using (28) end (65)5,6’ yields

(65)
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xV
el "‘35&”‘“&51; % T(azézz‘ 38)+% ”’a36tzz . (67)

Thus, the linearized system (65) is decoupled through the change of variables
(28), just as in the case of the inviscid jet. Again the solution of (65)
will have the form (37) and decompose into a symmetric mode ¢ and an
anti-symmetric mode §. Elimingting p and v among (66)1,2,3, for the symmetric

mode we obtain

- & Sl e t e Y -
R ¢ttzz 2¢tt ] p* (% a ¢zzzz 6¢zz)t-+p*a (a szzz.+¢zz) g {68)

For solutions of (68) to be of the form (32), o, and k_ must satisfy

e 2 22 T 2 2\,2 2
5 az = (-8- koa + 3)k0a ;;;;g (1- koa )koa
S o] . =5
(10 )" + T2 g = % 2o . (69)
8 o o

It follows from (69) that io  can be real and positive if and only if
R <l 5 (70)

Hence the range of unstable wavelengths for the symmetric mode is precisely the
same as for an inviscid jet. The effect of viscosity in the present case is to
diminish the magnitude of g, over the range (70) and therefore retard the
impending disintegration of the jet. As in section 3,we consider solutions for
the anti-symmetric mode in the form (35). Using (35) in (67) we obtain

the relation

2
(102)2-+-§#§-(kga2+-8)(ioe)-+;%§§ (k2a21-3) =0 (71)

between 9 and k2. From (71) one can show that i02 has e negative real
part for all values of k2. This indicates, as in the case of the inviscid jet,

that the anti-symmetric mode is stable for disturbances of all wavelengths.

The effect of viscosity, however, is to damp the disturbance in proportion




- '.:.:--su-;-t e

to the magnitude of the shear viscosity p. Critical damping for a given value

of k2 corresponds to E |

252
o 2u? i 16(k2a +3)
e e 2
oA (k23+8)

(72)

*
where we have introduced the non-dimensional parameter A for later convenience.

We close with a comparison of certain results of this section with those of
a similar investigation by Weber (4] who has examined small axially symmetric
perturbations to uniform flow of a cylindrical viscous jet using an approximate
form of the linearized Navier-Stokes equations. Weber's procedure employs

specific assumptions on the variation of stress and velocity in the cross-

section of the jet and ignores all but the axial component of momentum. This
approach leads to a one-dimensional reduction of the three-dimensional equations ?

and corresponding to (69) gives

2p*a3

(i0)% + = 3%a%(10,) = ——= (1-K2a°)Koa? . (73)
p a

A plot of ico versus koa is given in Fig. 1 for various values of the parameter
A over the range (70) of unstable wavelengths, using both (69) and (73). It
can be seen from this graph that the difference between the results of each
approach is greatest for an inviscid jet (A=0) and gradually diminishes with
increasing viscosity, other things being equal.

On the basis of the close agreement (Table 1) with the exact three-
dimensional analysis of Rayleigh [1,2] for an inviscid jet (A=0), it is
reasonable to ;nfer from Fig. 1 that for a viscous jet the results of this
section constitute an improvement over the approximate treatment of Weber [4].

In support of this inference, we appeal to some numerical results recorded in

*The parameter A2 can be recognized as twice the ratio of the Weber number to
the square of the Reynold's number.




Chandrasekhar [6] which are based on the implicit dispersion relation obtained
from the linearized Navier-Stokes equationsf Figure 2 shows a magnified portion
of oné of the curve pairs in Fig. 1 corresponding to A=0,5 along with points
obtained from the tables in Chandrasekhar [6] . We show the region near
maximum 9, in view of its importance in the breakup process. The fact that the
theory of a directed fluid jet offers an improvement over Weber's results is

clearly evident.

Acknowledgment. The results reported here were obtained in the course of research
supported by the U.S. Office of Naval Research under Contract NOOOl4-76-C-OUTL,
Project NR 062-534, with the University of California, Berkeley.

1'The difficulty in dealing analytically with this same dispersion relation is
what led Weber [4] to consider an approximation to the three-dimensional
equations. ‘
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